

EU-Latin America and Caribbean Aviation Partnership Project (EU-LAC APP)

Enhancing the aviation partnership between the EU and Latin America and the Caribbean

Redes y servicios de comunicaciones

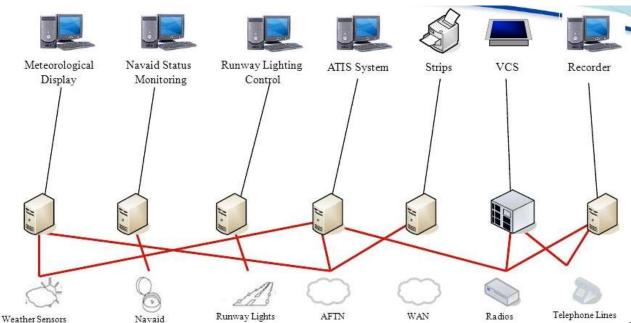
Taller de Automatización ATM - 08

Your safety is our mission.

An Agency of the European Union

Índice

- → Redes de datos la transición a redes IP y la ATN
- → AFTN y la evolución a AMHS
- → Implementaciones regionales e internacionales
- → Importancia de la infraestructura de comunicaciones como habilitador de servicios avanzados
- → Data-link (CPDLC)


Redes de datos – la transición a redes IP y la ATN

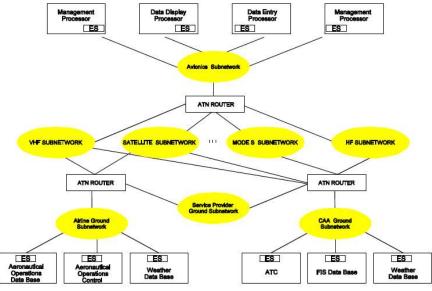
El desarrollo de plataformas de red que habiliten servicios de datos avanzados tiene una larga historia

→ Las comunicaciones ATM históricamente han utilizado redes de datos diversas para distintos servicios, creando problemas de fragmentación y generando altos

Las tecnologías digitales y las redes abiertas cambiaron el paradigma

- → Con el incremento del tráfico aéreo, y el desarrollo de tecnologías digitales, surgió la necesidad de implementar sistemas de comunicaciones de datos estandarizados globalmente para habilitar la aplicación de servicios automatizados
- → Estos servicios requerirían una infraestructura de comunicaciones digitales integrada e interoperable, que incluyese a las aeronaves como nodo
- → De ahí surgió el concepto ATN (Aeronautical Telecommunications Network) como arquitectura de red interoperable para apoyar los servicios distribuidos de automatización ATM

La OACI impulsa la estandarización de una red global de datos para servicios aeronáuticos


- → En los años 90, la OACI desarrolló la especificación de una red interoperable basada en el protocolo OSI (Open System Interconnection) – ATN/OSI
- → El concepto es interconectar los diversos componentes y sub-redes tierra y aire en una red interoperable para habilitar servicios ATM automatizados
- → Muchos servicios tierra-tierra y tierra-aire se han implementado sobre la ATN/OSI CPDLC, AMHS...
- → La especificación de la arquitectura está definida en el Doc 9880 de la OACI

El concepto ATN/OSI es un paso intermedio entre redes propietarias y redes totalmente abiertas e interoperables

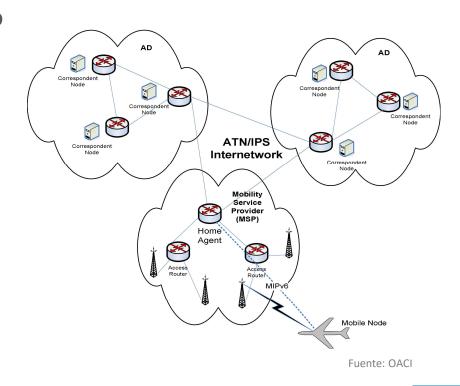
- → La ATN/OSI sirve de nexo entre varias subredes de comunicaciones propietarias y abiertas, a través de routers ATN que conectan estas sub-redes entre ellas
- → La idea original era incluir a las líneas aéreas en la ATN/OSI, desgraciadamente el coste/beneficio muchas veces no era justificable

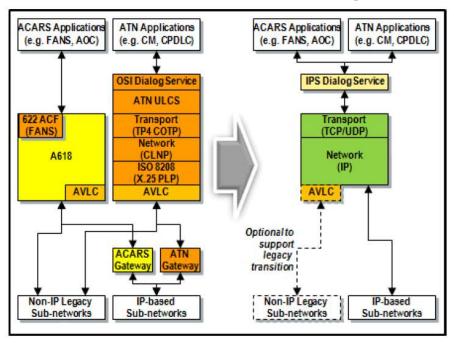
Fuente: OACI

Finalmente, la industria de telecomunicaciones giró hacia el protocolo IP, resultando en problemas de costes e interoperabilidad en mantener redes ATN/OSI

El protocolo IP (IPS-Internet Protocol Suite) es el protocolo de internet, con alta disponibilidad de infraestructura

→ En el año 2003 se recomendó el desarrollo de una especificación de ATN basada en protocolos IP, para establecer una arquitectura que sea flexible, modular, segura y transparente para los usuarios – ATN/IPS


- → Esto permitiría el uso de infraestructura comercial (COTS), reduciendo costes
- → Permitirá el apoyo a aplicaciones más diversas (AOC, VoIP) y el uso de aplicaciones avanzadas de banda ancha, todo esto asegurando el soporte de aplicaciones "legacy"
- → La especificación de la arquitectura, aplicaciones y material guía están definidos en el **Doc 9896** de la OACI


ATN/IPS busca ser una plataforma end-to-end, pero asegurando la interoperabilidad con otras sub-redes

- → Se integra a las aeronaves como nodo en la red IP, utilizando funciones de movilidad de IPv6
- → Apoya servicios tanto ATS, AOC (Aeronautical Operational Control) y
 AAC (Aeronautical Administrative Communication)
- → Se pueden utilizar parámetros de calidad de servicio para clasificar los distintos tipos de tráfico en base a sus requerimientos de rendimiento

La transición de ATN/OSI a ATN/IPS implica la adaptación de los servicios al modelo unificado tipo "Internet"


Fuente: Boeing

Esto asegura la interoperabilidad y reduce los costes, apoyándose sobre tecnologías comerciales ampliamente disponibles, como es el caso en otras industrias (banca, telecom...)

AFTN y la evolución a AMHS

AFTN (Aeronautical Fixed Telecommunication Network) es un sistema mundial para intercambiar texto/datos

- → AFTN está basado en X.25, y es un protocolo de transmisión de datos basado en circuitos fijos desarrollado en los años 70 y fuera de uso en el resto de industrias
- → Se utiliza para intercambiar información de vuelo, meteorológica, administrativa, etc. a nivel mundial entre ANSPs, aeropuertos, o organizaciones gubernamentales

```
(FPL -ACF402 IN
-EA30/H-S/C
-EHAM0940
-K0830F290 LEK28 LEK UA6 XMM/M078 F330
UA6 PON URION CHW UA5 NTS DCT 4611N00412W
DCT STG UA5 FTM FATIMIA
-LPPT0230 LPPR
-REG/FBVGA SEL/EJFL EET/LPPC0158 DOF/140908)
```

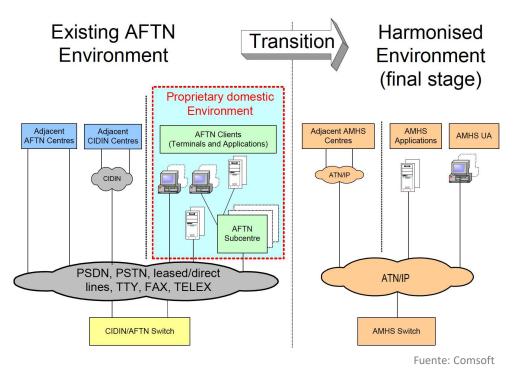

AFTN tiene muchas limitaciones

- → El **número máximo de caracteres** por mensaje es limitado
- → Las **direcciones disponibles** son limitadas
- → El ancho de banda es muy limitado y su utilización es ineficiente
- → Tiene poca **flexibilidad**
- → Los **equipos** están anticuados, son caros y muchos están fuera de fabricación

Por esta razón, en los últimos años se ha migrado hacia un sistema más avanzado, AMHS (ATS Message Handling System)

AMHS es un sistema diseñado exclusivamente para comunicaciones de datos internacionales

- → AMHS está basado en **X.400**, un protocolo de transmisión de mensajes originalmente diseñado para al e-mail
- → Surgió en los años 2000 como el servicio de la ATM para intercambiar mensajes aeronáuticos:
 - Planes de vuelo
 - → NOTAMS
 - → Información meteorológica...
- → La implementación de AMHS entre países es un proceso coordinado que requiere una serie de pruebas a nivel de interoperabilidad y conformidad, para asegurar el comportamiento correcto del enlace



AMHS tiene varias ventajas en comparación con AFTN

- → Fiabilidad en la entrega del mensaje
- → Longitud de mensajes prácticamente ilimitada
- → Sin limitación de número de direcciones
- → Al ser un protocolo a nivel de aplicación, puede implementarse sobre distintas redes (OSI, IP...)

La migración de AFTN a AMHS simplifica a nivel técnico y operativo las comunicaciones, habilitando la integración de servicios bajo la ATN/IPS

16

La migración a AMHS suele implicar una fase de transición donde se utilizan gateways AFTN/AMHS para operar ambos sistemas en paralelo

- → Las especificaciones técnicas del Gateway AFTN/AMS y de la conversión de mensajes están definidas en el **Doc 9880 Parte 2B de OACI** (Manual de especificaciones técnicas para ATN/OSI Aplicación AMHS)
- → Los **gateways** serán necesarios hasta que todos los usuarios hayan migrado a AMHS

Implementaciones regionales e internacionales

La implementación ATN de forma armonizada por los estados generalmente se coordina por las oficinas regionales de la OACI

- → La implementación ATN de forma armonizada asegura la interconexión e interoperabilidad de los servicios aeronáuticos
- → En la actualidad hay implementaciones ATN en la mayoría de las regiones de OACI, con distintas capacidades de servicios
- → La interconexión entre implementaciones ATN regionales está en pie, generalmente para servicios básicos tales como AFTN, AMHS, AIDC o voz

Desde 1994 en la región SAM se examinaron opciones para implantar una red digital regional ATN de voz y datos

- → En 1996 se solicitó a la oficina regional SAM coordinar con los estados la implantación de una red digital La REDDIG, y el acuerdo institucional se finalizó en 1998
- → OACI es el administrador de la red a través del mecanismo de cooperación técnica
- → La REDDIG entró en operación en 2003, como una red satelital con red de backup ISDN
- → Cuando los equipos empezaron a quedarse obsoletos, se lanzaron actividades de actualización de la REDDIG – la versión actual (REDDIG II)

La REDDIG II cuenta con una red terrestre MPLS de fibra óptica y una red satelital redundantes sobre tecnología IP

La REDDIG II entró en operaciones después de extensos estudios de implantación

La REDDIG II transporta varios servicios entre los estados miembros así como conectando otras redes regionales

- → La red satelital sigue siendo primaria, con la red MPLS
- → Transporta los siguientes servicios:
 - → AFTN & AMHS
 - → RADAR & ADS
 - → ATS Telefonía
 - > NMS (Administración & Gestión)
- → Tiene capacidad para interconectar los actuales enlaces analógicos y digitales y los nuevos enlaces de tecnología IP

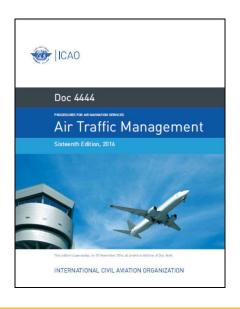
La REDDIG tiene 17 nodos en 14 países

REDDIG Nodes:

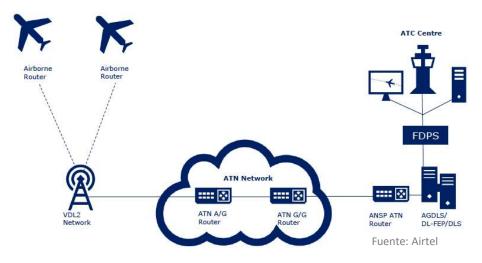
- •17nodes
- •14 countries
- •1 MEVA interconnection node (Tegucigalpa-COCESNA)
- •2 Master stations (Manaus & Ezeiza)

Data-link (CPDLC)

CPDLC es un sistema de comunicaciones ATS controladorpiloto utilizando mensajes de datos


- → CPDLC como sistema de comunicaciones habilita un número de servicios de data link (DLS)
- → Los controles pueden enviar **autorizaciones/instrucciones** ATC así como texto libre
- → Como alternativa a los mensajes de voz, tiene las siguientes ventajas principales:
 - Mejor claridad de mensajes y reducción de errores de transmisión / interpretación
 - → Mejor eficiencia del uso de los canales de radio
 - Aumento de capacidad Reducción de carga de trabajo para pilotos y controladores

El servicio, los mensajes y su operativa están cubiertos por documentación de la OACI

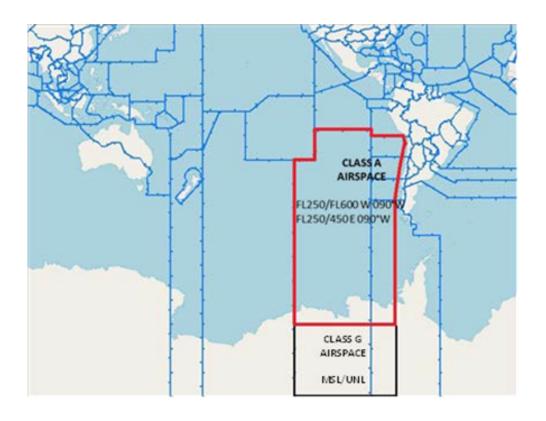

→ Los SARPS y la documentación guía de CPDLC se encuentran en el Anexo 10 Volumen III de OACI, mientras que los tipos de mensajes en Doc 4444 (PANS-ATM) Anexo 5

La conectividad a través de CPDLC requiere conectividad a través de la ATN y equipamiento tierra y aire

- → La capacidad de la aeronave se establece en el plan de vuelo
- → Se sigue un procedimiento de "log-on" en cada ATSU
- → El numero de servicios utilizado y su uso a nivel práctico dependerá de la implantación local

Los siguientes servicios de datalink están disponibles (1/2)

- → Data Link Initiation Capability (DLIC) Establecimiento de la conexión
- → ATC Communications Management Service (ACM) Asistencia automatizada para la transferencia de comunicaciones
- → ATC Clearances Service (ACL) Intercambios operacionales (notificaciones, instrucciones, autorizaciones)


Los siguientes servicios de datalink están disponibles (2/2)

- → ATC Microphone Check Services (AMC) Verificar el bloqueo de un canal de voz por una aeronave en el sector
- → Departure Clearance (DCL) Asistencia automatizada para autorizaciones de salida
- → Downstream Clearance Service (DSC) Para coordinación de la aeronave con el siguiente sector

En Europa por regulación son de obligada implementación los servicios DLIC, ACM, ACL and AMC

En Chile se hace uso de CPDLC en el Área Oceánica de Control de Santiago

Importancia de la infraestructura de comunicaciones como habilitador de servicios avanzados

El concepto de "Performance Based Communications" es análogo a PBN, pero asociando el rendimiento de la infraestructura de comunicaciones a servicios "safety"

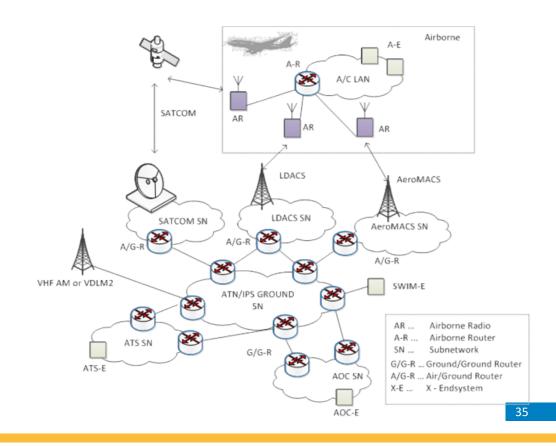
- → Los criterios de rendimiento definidos para cada servicio (RCP Required Comms Performance) son:
 - → Tiempo máximo de transacción (latencia)
 - → Continuidad
 - → Disponibilidad
 - Integridad
- → Generalmente estos números originan de un safety assessment Evaluación de seguridad operacional

Ejemplo RCP de CPDLC oceánico

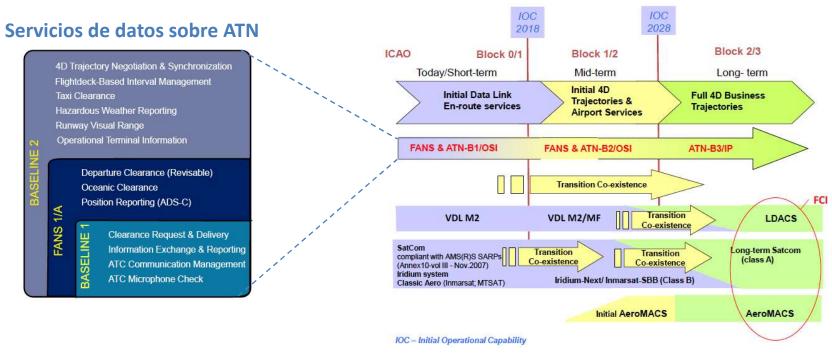
Especificación RCP	Tiempo max (sec)	Continuidad	Disponibili dad	Integridad
400	400 350	0.999	0.999	Erorres = 10 ⁻⁵ Por hora de vuelo
240	240 210	0.999 .95	0.999 (safety) 0.9999 (eficiencia)	Erorres = 10 ⁻⁵ Por hora de vuelo

→ Performance-Based Communications and Surveillance (PBCS) Manual Doc 9869

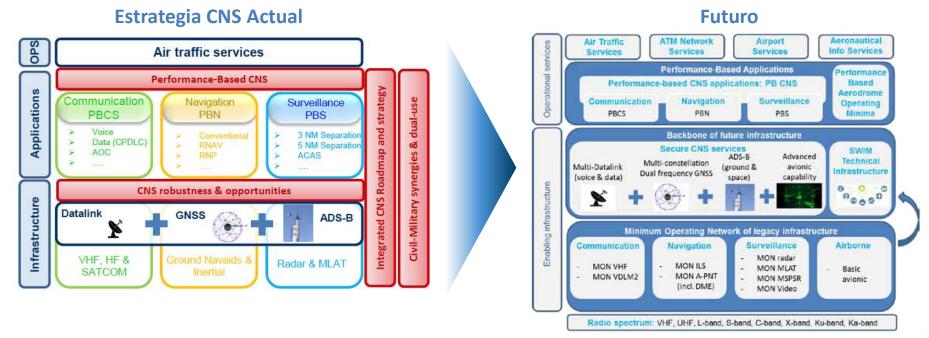
EASA

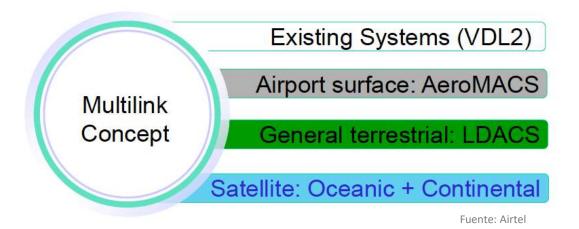

Los servicios automatizados ATM avanzados requieren una infraestructura de comunicaciones de datos global y de alto rendimiento para alcanzar su potencial

- → Los requerimientos de servicios tales cómo Trayectorias 4D no pueden cumplirse con la infraestructura actual
- → Se prevé una infraestructura que integre a las aeronaves en la red en todas las fases de vuelo en una arquitectura ATN/IPS, aumentada en el tramo A/G por sistemas de alto rendimiento (Future Communication Infrastructure – FCI)


La FCI consistirá de varios sistemas de comunicaciones de alto rendimiento integrados en un entorno IP

- → Sistema de comunicaciones aeroportuario (AEROMACS)
- → Sistema de comunicaciones terrestre (LDACS)
- → Sistema de comunicaciones satelital (IRIS)


La transición hacia los nuevos servicios y las nuevas capacidades será progresiva


La estratégica de comunicaciones futuras se orienta a la convergencia entre capacidades técnicas y necesidades de servicio

Fuente: SESAR JU

Para los servicios mas críticos se plantea un concepto "Multilink" que mejore el rendimiento a través de varios enlaces de datos simultáneos

¿Preguntas, comentarios?

www.eu-lac-app.org

This project is funded by the European Union and implemented by the European Aviation Safety Agency

easa.europa.eu/connect

Your safety is our mission.

An Agency of the European Union

